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ABSTRACT 

Life table data for Helicoverpa armigera (Hübner) that were reared on an 
artificial diet at 29°C were collected in the laboratory and analyzed using the 
age-stage, two-sex life table. The age-specific fecundity was calculated based on 
the number of eggs hatched in order to accurately reveal the biological 
characteristics of H. armigera by capturing the variation in hatch rate with 
female age. The intrinsic rate of increase (r), finite rate (λ) and mean 
generation time (T), net reproductive rate (R0), and gross reproductive rate 
(GRR) of H. armigera were 0.1029 d-1, 1.1083 d-1, 36.7 d, 40.2 offspring and 68.6 
offspring, respectively. The relationship between the net reproductive rate and 
the mean female fecundity was consistent with theoretical proof. This study 
indicated that a 29°C temperature regime is not as conducive as a 25°C 
temperature regime for rearing H. armigera on an artificial diet in the 
laboratory. The standard errors of the life table parameters were estimated 
using both the jackknife and bootstrap techniques. The frequency distribution 
of the sample means obtained by the jackknife technique failed the normality 
test, while the bootstrap results fitted the normal distribution well. Because 
the jackknife technique generates biologically meaningless zeros for the net 
reproductive rate, it should not be used for estimating the standard error of the 
net reproductive rate. The application of the jackknife technique in estimating 
other population parameters requires further examination. For a correct 
estimation of the intrinsic rate, the age index and the exponent in the 
Euler-Lotka equation should be chosen according to the definition of the 
age-specific survival rate (lx) and the age-specific fecundity (mx). Because the 
age-stage, two-sex life table accurately describes the survival, development, 
stage differentiation, and reproduction of insects, we suggest it should be used 
in the analysis of insect demography. 
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Introduction 
 

Helicoverpa armigera (Hübner) 
(Lepidoptera: Noctuidae) is an agricultural 
pest of worldwide significance. It achieved 
pest status partly due to its polyphagy, high 
mobility, high fecundity, and facultative 
diapause, which enables it to survive in 
various habitats and adapt to seasonal 
changes (Fitt, 1989). It is listed as a 
quarantine pest by the European and 
Mediterranean Plant Protection Organization 
(EPPO, 2008). Larvae of H. armigera 
prefer to eat the reproductive organs of 
plants (Zalucki et al., 1986; Fitt, 1989). 
Temperature is one of the most important 
abiotic factors that influence the survivorship, 
development and reproduction of this 
species (Mironidis and Savopoulou, 2008). 
However, being an ectothermic animal, 
insects can rapidly acclimatize (Yazdani 
and Agrawal, 1997). 

Despite an enormous volume of 
research work done on H. armigera (Fitt, 
1989), the published studies that focused 
on the ecology of this pest are rather small 
(Zalucki et al., 1986). Diverse types of 
ecological studies have used life table 
analysis in their research (Wilcox and 
Murphy, 1985; Chi and Getz, 1988; Chi, 
1990; Bellows et al., 1992; Chi, 1994; 
Sakai et al., 2001; Stark and Banks, 2003). 
Life table analysis is an effective way to 
accurately comprehend the effect of 
external factors on the growth, survival, 
reproduction, and the intrinsic rate of 
increase of insect populations (Chi and Su, 
2006). Thus, in order to develop a better 
understanding of the variation in 
demography of this pest, it is necessary to 
develop accurate life tables for H. armigera 
under different conditions (Zalucki et al., 
1986). Understanding the demography of 
an insect under variable conditions is the 
cornerstone for developing strategy to 
manage it in an eco-friendly manner. 

Some life history studies of H. armigera 
have been performed under varying 
conditions (Jallow et al., 2001; Pascua and 

Pascua, 2002; Ge et al., 2003; Liu et al., 
2004; Wu et al., 2006; Fu et al., 2008; 
Mironidis and Savopoulou, 2008; Yin et al., 
2009, 2010; Naseri et al., 2009, 2011; Jha 
et al., 2012). Many of these studies are 
based on age-specific, female-only life 
tables, which ignore the stage overlapping 
in H. armigera populations (e.g., Liu et al., 
2004), or calculate age-specific fecundity 
based on the “adult age” (e.g., Mironidis 
and Savopoulou, 2008). Some studies are 
based on partial life tables (e.g., van 
denBerg and Cock, 1993; Dabhi and Patel, 
2007). Like most insects, H. armigera 
populations are two-sex with considerable 
variation in the developmental rate among 
individuals, in offspring sex ratio and in 
the hatch rate of eggs produced by 
mothers of different ages (Jha et al., 2012). 
The application of an age-specific female 
life table (Lewis, 1942; Leslie, 1945; Birch, 
1948) to H. armigera leads to an erroneous 
relationship among gross reproductive 
rate, net reproductive rate, and pre-adult 
survivorship (Yu et al., 2005; Jha et al., 
2012). The application of the age-stage, 
two-sex life table theory (Chi and Liu, 
1985; Chi, 1988) overcomes such shortfalls 
when estimating life table parameters. 
The jackknife and bootstrap techniques 
are usually used to estimate the variance 
of life table parameters to correct for bias. 
Efron (1982) reported that the bootstrap 
technique has a higher reliability than the 
jackknife technique for estimating variances. 
Although the jackknife technique has been 
used in demographic statistics for several 
decades, Chi and Yang  (2003) noticed the 
problem and explicitly stated that “It 
results in some degree of discrepancy 
between the estimated means and their 
definition”.  

In this study, the life history data of H. 
armigera reared on an artificial diet at 
29°C were collected and analyzed using 
the age-stage, two-sex life table theory. 
Since 29°C is a candidate temperature 
used for rearing H. armigera in the 
laboratory, the demographic merits and 
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demerits of rearing H. armigera at 29°C 
were evaluated against the demography of 
H. armigera reared at 25°C as mentioned 
in Jha et al. (2012). In the present paper 
we demonstrated the procedure of jackknife 
and bootstrap techniques extended to a 
net reproductive rate and discussed its 
applicability. The accuracy of the various 
forms of the basic demographic equation, 
i.e. the Euler-Lotka equation, ever debated 
(David, 1995; Case, 2000), is also illustrated 
by calculations from the data of a 
hypothetical cohort to solve for r, and the 
result was cross-checked with the result 
obtained from the Lewis-Leslie matrix and 
the population projection. 
 
Materials and Methods 
 

Helicoverpa armigera: A colony of 
H. armigera was originally collected from 
a field in Taichung City and maintained in 
the Microbial Control Laboratory, Department 
of Entomology, National Chung Hsing 
University, Taichung, Taiwan (R.O.C.). 
The colony was periodically supplemented 
with larvae collected from the field to 
reduce inbreeding depression. The colony 
was maintained on an artificial diet at 
25°C. The composition of the artificial diet 
was modified from Kao (1995). The 
ingredients of this diet were the same as 
those mentioned in Jha et al. (2012). 

Life table study. The colony of H. 
armigera was reared on the artificial diet 
for one generation in a growth chamber at 
29 ± 1°C, 65 ± 5% RH, and a photoperiod 
of 14:10 (L:D) prior to the life table study. 
Newly emerged adults were paired and 
kept in pairs in an individual oviposition 
container (a plastic cup measuring 9 cm in 
diameter × 5.5 cm in height, lined with 
paper towel). The adults were provided 
each day with a 30% honey solution 
soaked in a cotton ball. Eggs from each 
female were collected in Petri dishes (9 cm 
diameter) and kept separately in the 
growth chamber mentioned above. The 
hatch rate was observed daily. Due to the 

variable hatch rate of eggs laid by females 
of different ages, we used 112 hatched first 
instars with known egg duration to begin 
the life table study. The newly hatched 
larvae were individually transferred to 
Petri dishes (9 cm diameter) by using a 
fine brush. They were then reared as a 
group to second instar. The third and older 
instars were reared individually in 30-well 
plates. The individual larvae were observed 
daily for molting and survivorship. The 
artificial diet was replaced every other day. 
The larvae entering into the prepupal 
stage were provided with decomposed 
peat-based compost (Blocking Compost by 
Plantflor Humus Verkaufs_GmbH, D 
49377 Vechta, Germany) for pupation. 
Each pupa was sexed, weighed, and then 
kept in an individual plastic cup (9 cm 
diameter × 5.5 cm height). Newly emerged 
adults were paired in oviposition containers 
lined with paper towel and transferred 
daily to a new container. Eggs laid by each 
female at different ages were collected and 
kept separately to record the hatch rates. 
If any moth died earlier than its mate, an 
individual of the same sex would be supplied 
from the mass reared colony. The data 
from these recruited individuals were 
excluded from the analysis. 

Data analysis. We analyzed the raw 
data based on the theory of the age-stage, 
two-sex life table (Chi and Liu, 1985) and 
the method described by Chi (1988). The 
mean of the development periods for each 
development stage, the longevity of each 
adult male and female, the adult pre- 
oviposition period (APOP), the total pre- 
oviposition period (TPOP) and the female 
fecundity of H. armigera were calculated. 
The APOP was calculated based on the 
adult age, while the TPOP took the total 
pre-adult age into consideration. The 
age-stage specific survival rate (sxj) (where 
x is the age and j is the stage), the age- 
stage specific fecundity (fxj), the age- 
specific survival rate (lx), and the age- 
specific fecundity (mx) were calculated 
from daily records of survival and 
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fecundity of all the individuals of the 
cohort. The sxj is the probability that a 
new born will survive to age x and stage j. 
The age-specific survival rate (lx) is the 
probability that a new born survives to age x, 
and was calculated as  where 
m is the number of stages. The age-specific 
fecundity (mx) was calculated from the 
daily records of the survival and fecundity 
of all individuals in the cohort 

. The age- 

stage specific fecundity (fxj) is the number 
of eggs produced by every individual of age 
x and stage j. In this study, the fxj was 
calculated from the number of eggs that 
hatched, because it reflects the true 
biological characteristics of H. armigera. 
The population parameters estimated 
were the intrinsic rate of increase (r), the 
finite rate (λ), the gross reproductive rate 
(GRR), the net reproductive rate (R0), and 
the mean generation time (T). In this 
paper, the intrinsic rate of increase was 
estimated by using the iterative bisection 
method from the Euler-Lotka formula: 
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with the age indexed from 0 (Goodman, 
1982). The finite rate λ was calculated as 
er. The mean generation time (T) is 
defined as the length of time that a 
population needs to increase to R0-fold of 
its size when the stable age-stage 
distribution and the stable increase rate 
(i.e., r and λ) are reached. In other words, 
this means that erT = R0 or λT = R0. The 
mean generation time was calculated as  
T = 1n R0/r. The net reproductive rate (R0) 
was calculated as . The 
gross reproductive rate (GRR) was 
calculated as  xmGRR . Based on the 

age-stage, two-sex life table, the life 
expectancy for an individual of age x and 
stage y (exy) was calculated as follows, 
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where n is the number of age groups, m is 
the number of stages, and s'ij is the 
probability that an individual of age x and 
stage y will survive to age i and stage j 
respectively, and is calculated by assuming 
that s'xy = 1 following the procedures 
described in Chi (1988) and Chi and Su 
(2006). The age-stage specific reproductive 
value (vxj) (where x is the age and j is the 
stage) was calculated as well. As we begin 
the life table with newly hatched larvae 
with known egg duration, and since the 
unhatched eggs were excluded from the 
parent cohort we also excluded the 
unhatched eggs from the fecundity in the 
life table analysis. Eight individuals that 
died due to mechanical damage or 
disappeared during the experiment were 
also excluded from the analysis. To deal 
with the tedious process of raw data 
analysis and to achieve high accuracy in 
the parameter estimation, we used a 
computer program, TWOSEX-MSChart for 
age-stage, two-sex life-table analysis (Chi, 
2012a), designed in Visual BASIC (Version 
6.0 Service pack 6) for the Windows 
operating system, available at http://140. 
120.197.173/Ecology/prod02.html (National 
Chung Hsing University, Taichung, Taiwan). 
The population parameters, development 
times, and fecundities of H. armigera 
reared at 29°C were compared with the 
cohort reared at 25°C by re-analyzing the 
raw data set of the life table from Jha et al. 
(2012). Since a normal distribution is a 
prerequisite for the application of the 
t-test, the Mann-Whitney test (U-test) 
(Sigmaplot 11.0, Systat Software Inc.) was 
used to perform the significance test of the 
variables due to the failure of the data in 
the normality test. 

In this study, the procedure of Meyer 
et al. (1986) and Efron and Tibshirani 
(1993) were adopted for the jackknife and 
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bootstrap techniques in order to estimate 
the means and standard errors of the 
intrinsic rate of increase (r), the finite rate 
(λ), the gross reproductive rate (GRR), the 
net reproductive rate (R0) and the mean 
generation time (T). The frequency 
distribution curves of the net reproductive 
rate (R0) estimated using these two 
resampling techniques were compared. 
Meyer et al. (1986) mentioned the step by 
step procedure for applying these two 
resampling techniques only to the 
intrinsic rate of increase (r). In the next 
sections, the procedure for applying these 
two techniques to the net reproductive 
rate (R0) will be described step by step. 

Jackknife Procedure. First of all, in 
order to apply the jackknife technique to 
the net reproductive rate (R0), the net 
reproductive rate for all n individuals of 
the cohort (R0,all) must be calculated as 
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where lx and mx are calculated by 
including all individuals in the cohort. 
Then, an individual i is omitted and the 
other n-1 individuals are used to calculate 
the jackknife value of R0,i as 
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where lx and mx are calculated by omitting 
the data for individual i. In the next step, 
R0,i－pseudo is calculated as 
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Finally, according to the jackknife 
technique the mean R0,J , variance s2

J, and 
the standard error se (R0,J) are calculated 
as  
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Bootstrap procedure. In the 
bootstrap procedure, a sample of n 
individuals from the cohort is taken with 
replacement and R0,i－boot is then calculated 
for the bootstrap sample as  
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where the subscript i-boot represents the 
ith bootstrap and lx and mx are calculated 
from the n individuals selected randomly 
with replacement. In this paper, this 
procedure was repeated 10,000 times (m = 
10,000). We then computed the bootstrap 
estimates of the mean R0,B, variance s2

B 
and standard error se(R0,B) of the net 
reproductive rate as  
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Following the same procedures for the 
corresponding estimates of the gross 
reproductive rate (GRR), the mean GRRJ, 
variance and standard error of GRRJ, 
according to jackknife techniques and the 
mean GRRB, the variance and standard 
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error of GRRB, according to the bootstrap 
technique, are then estimated. 
 
Results 
 

The development times for each stage, 
adult longevity, pre-oviposition period, and 
female fecundity of H. armigera at 29°C 
are listed in Table 1. The duration of each 
stage of H. armigera reared at 29°C was 
significantly shorter than for individuals 
reared at 25°C with the exception of the 
6th larval instar and prepupa. When 
reared at 29°C, 55% of the 5th instar 
larvae developed to 6th instars, while only 
9% of the 5th instars reared at 25°C 
developed to 6th instars. There was no 

significant difference in pupal weight 
between H. armigera reared at 29°C and 
individuals reared at 25°C (Table 1). The 
mean total pre-oviposition period (TPOP) 
of H. armigera reared at 29°C was 35.36 
days, which is significantly shorter than 
for individuals reared at 25°C. The mean 
fecundity of H. armigera at 29°C was 
138.73 fertile eggs which is considerably 
less than the mean fecundity of H. 
armigera reared at 25°C (381.79 fertile 
eggs). The percentage of ovipositon days 
was 18.09% when reared at 29°C and 
24.25% when reared at 25°C. The age- 
specific total number of eggs and number 
of hatched eggs are shown in Fig. 1. 

Table 1.  Basic statistics (mean ± S.E.) of the life history of Helicoverpa armigera reared at 29°C 

Statistics Stage or Sex 
Temperature Regime 

p 29°C 25°C† 
n Mean ± S.E. n Mean ± S.E. 

Stage specific pre- adult 
duration (d) 

Egg 104 2.08 ± 0.03 106 2.53 ± 0.05 <0.001
First Instar 100 2.22 ± 0.05 97 2.4 ± 0.05 0.007
Second Instar 93 2.15 ± 0.1 89 3.38 ± 0.09 <0.001
Third Instar 83 3.66 ± 0.21 81 4.95 ± 0.30 <0.001
Fourth Instar 82 2.96 ± 0.14 77 4.04 ± 0.28 0.001
Fifth Instar 82 3.11 ± 0.16 74 4.89 ± 0.16 <0.001
Sixth Instar 45 3.53 ± 0.21 7 3.71 ± 0.36 0.477
Larva 80 16.01 ± 0.35 74 19.58 ± 0.49 <0.001
Prepupa 77 2.31 ± 0.06 71 2.20 ± 0.10 0.323
Pupa 62 9.95 ± 0.15 60 12.77 ± 0.19 <0.001
Egg- Pupa 62 29.97 ± 0.4 60 37.10 ± 0.60 <0.001

Pupal weight (gm) Pupa 62 0.249 ± 0.006 60 0.261 ± 0.005 0.145

Adult longevity (d) 
Female 30 28.03 ± 1.05 29 30.17 ± 2.88 0.249
Male 32 28.88 ± 1.69 31 27.68 ± 2.02 0.659

APOP (d) Female 14 5.34 ± 0.73 19 7.16 ± 0.89 0.218
TPOP (d) Female 14 35.36 ± 1.12 19 42.37 ± 0.58 <0.001
Fecundity (F) 
(eggs/female) 

Female 30 138.7 ± 49.4 29 381.8 ± 104.7 0.077

Oviposition days Female 14 5.07 ± 0.34 19 7.32 ± 0.29 0.254
† Data are from the same source used for Jha et al. (2012) 
All the p values are obtained from the U-test except for the p value of the pupal weight. 
APOP (Adult pre-oviposition period) and TPOP (Total pre-oviposition period) are calculated by using females that 
produced fertile eggs. 
The mean oviposition days are calculated by taking only those days in which the number of hatched eggs was 
more than zero. 
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The age-stage survival rate (sxj) of H. 
armigera reared at 29°C is plotted in Fig. 
2. Parameter sxj is the probability that a 
new born of H. armigera will survive to 
age x and stage j. The variable development 
rates among individuals in the cohort 
resulted in an overlapping of the stage- 
specific survivorship curves. The daily 
mean number of fertile eggs produced by 
individual H. armigera of age x and stage j 
is shown with the female age-stage specific 
fecundity (fxj) (Fig. 3). Because only female 
adults (the ninth life history stage) produce 
offspring, there is only a single curve of the 
female age-stage specific fecundity (fx9). 
When all individuals of age x are included, 
it is expressed as the age-specific fecundity 
of the total population (mx). Parameter lx 
describes the change in the survival rate 
of the cohort with age (Fig. 3). It is the 
simplified version of the sxj curves shown 
in Fig. 2. The product of lx and mx is the 
age-specific maternity (lxmx) of H. armigera. 
Lower peaks of fx9, mx and lxmx were 

observed for H. armigera reared at 29°C 
than for H. armigera reared at 25°C (Fig. 
3 of Jha et al., 2012). 

The age-stage life expectancy (exj) (where 
x is the age and j is the stage) shows the 
expected lifespan for an individual of age x 
and stage j (Fig. 4). The age-stage life 
expectancy of the cohort of H. armigera 
reared at 29°C was shorter than the cohort 
reared at 25°C (Fig. 4 of Jha et al., 2012). 
The contribution of an individual of age x 
and stage j to the future population is 
shown by the reproductive value (vxj) (Fig. 
5) (Fisher, 1930).  

The means and standard errors of r, λ, 
R0, GRR, and T that were estimated by 
using the jackknife method and the 
bootstrap method are listed in Table 2. 
The intrinsic rate of increase and the 
finite rate (λ) for H. armigera at 29°C were 
0.1029 d-1 and 1.1083 d-1, respectively. At 
29°C, R0, T and GRR for H. armigera were 
40.2 offspring, 36.7 d, and 68.6 offspring, 
respectively. Comparing the bootstrap 

Fig. 1. Age-specific total number of eggs laid and age-specific hatched eggs of Helicoverpa armigera reared at 29°C.
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results shows that R0 and GRR for H. 
armigera reared at 29°C were significantly 
lower than those for the cohort reared at 
25°C. However, there were significant 
differences in r and λ in the jackknife 
estimation (Table 2). The mean generation 
time (T) was significantly different in both 
cases. For all population parameters, the 
variance estimated by the jackknife 
technique is much higher than that 
estimated by the bootstrap technique. The 
relationship between the mean fecundity 
and the net reproductive rate estimated by 
the bootstrap technique was, however, 
slightly inconsistent with the relationship 
proved by mathematical method in Chi 
and Su (2006). This observation tells us 
that we must take particular caution 
when applying resampling methods such 

as the jackknife and the bootstrap. 
 
Discussion 
 

This study comprehensively presented 
the life history and demography of H. 
armigera reared at 29°C. The shorter pre- 
adult stage, adult longevity and oviposition 
periods of H. armigera at 29°C in comparison 
to 25°C indicate a higher developmental 
rate at higher temperature. The basic 
statistics are consistent with the findings 
of Mironidis and Savopoulou-Sultani (2008). 

The age-stage, two-sex life theory has 
been widely applied in the study of various 
ecological aspects of insect pests and their 
natural enemies (Gabre et al., 2005; Amir- 
Maafi and Chi, 2006; Mo and Liu, 2006; 
Silva et al., 2006; Yang and Chi, 2006; Tsai 

Fig. 2. Age-stage specific survival rate (sxj) of Helicoverpa armigera reared at 29°C. 
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and Chi, 2007; Atlihan and Chi, 2008; 
Kavousi et al., 2009; Schneider et al., 2009; 
Bailey et al., 2010; Gao et al., 2012; Han et 
al., 2012; He et al., 2012; Nguyen and Shih, 
2012; Seyed-Talebi et al., 2012). The 
age-stage, two-sex life table can reveal the 
actual life history of H. armigera. For 
example, the overlapping in the sxj curves 
(Fig. 2), in the exj curves (Fig. 4), and in 
the vxj curves (Fig. 5) are due to the 
incorporation of the variable developmental 
rates among individuals into the age-stage, 
two-sex life table. Many researchers 
constructed the survival curves based on 
the means of each stage or adult age (e.g., 
Marcic, 2003, 2005; Legaspi, 2004; Kontodimas 
and Stathas, 2005; Legaspi and Legaspi, 
2005; Lin and Ren, 2005; Kivan and Kilic, 
2006; Tsoukanas et al., 2006). Lack of 
knowledge of the variable developmental 
rate will generate errors in the survival 

and fecundity curves and the overlapping 
in the stage-specific survival curves can 
not be properly presented. For example, 
there were a number of errors in Sandhu 
et al. (2010). On page 2028, the survival 
curve (lx) of Fig. 1h shows l3 > l2. Because 
the survival rate (lx) must be a decreasing 
sequence of age, it, by definition, must be 
in the format 1 ≥ l1 ≥ l2 ≥ l3 ≥ .... Moreover, 
if the values of lx and mx in Fig. 1 (Sandhu 
et al., 2010) are used to calculate the net 
reproductive rate (R0), then values are 
significantly different than those given in 
Table 3 of Sandhu et al. (2010) are obtained. 
Shi et al. (2012) used the results of Sandhu 
et al. (2010) in their study. Because the 
errors in Sandhu et al. (2010) are obvious, 
researchers that used results of Sandhu et 
al. (2010) may need to re-evaluate their 
conclusions. (According to http://www. 
bioone.org/doi/full/10.1603/EN10038, the 

Fig. 3. Age-specific survival rate (lx), female age-specific fecundity (fx9), age-specific fecundity of the total population
(mx), age-specific maternity (lxmx) and cumulative reproductive rate (Rx) of Helicoverpa armigera reared at
29°C. 
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article of Sandhu et al. (2010) has been 
withdrawn at the request of the authors 
due to numerous errors that cannot 
readily be corrected by publishing an 
erratum.) Taking examples of H. armigera 
life tables, this problem can also be seen in 
Fig. 1 of Mironidis and Savopoulou-Soultani 
(2008) and in Fig. 1 of Liu et al. (2004). In 
the former, the authors constructed the 
age-specific survival rate (lx) based on a 
female age-specific life table, and, in the 
latter, the authors constructed the age- 
specific survival rate (lx) based on the 
stage-structured life table. Moreover, 
calculating fecundity (mx) based on the 
adult age, e.g., Fig. 3 of Mironidis and 
Savopoulou-Soultani (2008), results in a 
miscalculation of the fecundity curve. These 

artificial manipulations and assumptions 
erroneously diminish the real variability 
among individuals, which consequently 
will result in errors in the survival and 
fecundity curves (Chi, 1988; Yu et al., 2005; 
Chi and Su, 2006; Huang and Chi, 2012a). 
To address the errors in life tables based 
on the adult age, Yu et al. (2005) and Chi 
and Su (2006) provided a detailed explanation 
and a mathematical proof. 

The relationship between the net 
reproductive rate, the mean female 
fecundity, the number of emerged females, 
and the total number of individuals used 
in the life table study are consistent with 
the theoretical proof (Chi, 1988). As noted 
by Chi and Yang (2003), the estimated 
values from both the jackknife and the 

Fig. 4. Age-stage specific life expectancy (exj) of Helicoverpa armigera reared at 29°C. 
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bootstrap methods showed slight 
inconsistencies. This question deserves 
further attention. 

The results of this study showed that 
H. armigera reared at 29°C had a lighter 
pupal weight and poorer reproductive 
performance than the individuals reared 
at 25°C. These differences primarily resulted 
from a shorter pre-adult and oviposition 
duration. However, the pre-adult survival 
did not differ substantially. The larger gap 
between the curves of the total number of 
eggs and the number of hatched eggs in 
Fig. 1 indicates the poor hatchability of 
eggs at 29°C compared to those at 25°C 
(Fig. 1 of Jha et al., 2012). These features 
were consequently expressed in by the very 
minor differences in r and λ between 

rearing at 29°C and at 25°C and by the 
significantly lower R0 and GRR at 29°C 
(Table 2). Thus, per capita labor cost and 
rearing cost of H. armigera at 29°C may be 
higher due to a lower harvest. 

The means and variance of the 
population parameters estimated by the 
jackknife and bootstrap resampling 
methods were also compared in this paper. 
The bootstrap method generated a normal 
distribution of estimated means, facilitating 
further robust statistical examination 
(Fig. 6). Efron (1982) reported that the 
bootstrap technique has a higher 
reliability than the jackknife technique for 
estimating variances. By using the 
bootstrap technique every bootstrap 
sample can be generated differently by 

Fig. 5. Age-stage specific reproductive value (vxj) of Helicoverpa armigera reared at 29°C. 
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sampling with replacement. In this way, 
bootstrapping creates variability in R0,B 
and GRRB. Even with the same number of 
replicates m, different R0,B and GRRB will 
be obtained. The variability depends on 
the size of m. The variability diminishes 
with the increasing m, but can always be 
observed in the variance and standard 
error as well as in the frequency 
distribution of R0,B and GRRB. Moreover, 
the p-value does not always decrease with 
the increase in bootstrap number m (Efron 
and Tibshirani, 1993). On the other hand, 
there is always exactly one jackknife 
result, and all the frequency distributions 
from the jackknife technique in Fig. 6 will 
be the same. 

In the case of the jackknife technique 
the R0,J will be zero if the omitted 
individual is a male or one that died in the 
pre-adult stage. This effect can be observed 
in the figure that shows the jackknife 
results (Fig. 6). A net reproductive rate of 
zero means that the population does not 
produce any offspring, and in that case we 
cannot calculate the intrinsic rate. However, 
the intrinsic rate of increase can be 
calculated by omitting one male individual 
or one that died before the adult stage. 
This outcome contradicts the life table 
theory. We therefore conclude that the 

jackknife technique should not be used for 
estimating the standard error of the net 
reproductive rate. Moreover, the application 
of the jackknife technique to R0 was 
mathematically invalidated by Huang and 
Chi (2012b), and they also suggested not 
to use it for the estimation of the 
variability of R0. Therefore, the mathematical 
validation of the choice of resampling 
techniques for other parameters requires 
further study. 

In this paper, the Euler-Lotka equation 
(Eq. 1) was used to calculate the intrinsic 
rate of increase instead of the approximation 
method (  xxxx mlmxlT ) suggested by 
Birch (1948). David (1995) and Case (2000) 
pointed out the issues of variation in the 
Euler-Lotka formula with the age index 
from zero and one. If the age is indexed 
from 1 (l1=1), Goodman (1982) suggested 
that the Euler-Lotka equation is  

 

1
1







xx

x

rx mle  13 

 

Both Eq. 1 and Eq. 13 give the same 
result for the age index from zero and 1, 
respectively. The following calculations 
based on a hypothetical cohort (Fig. 7) 

Table 2.  Mean ± S.E. of the population parameters of Helicoverpa armigera reared at 29°C using the jackknife and 
bootstrap methods 

Population parameters 

Jackknife Bootstrap 
29°C 25°C 29°C 25°C 

Mean ± S.E. 
n = 104 

Mean ± S.E. 
n = 106 

Mean ± S.E. 
n = 10,000 

Mean ± S.E. 
n = 10,000 

Intrinsic rate (r) (d-1) 0.1029 ± 0.011 0.1015 ± 0.007 0.0985 ± 0.0001a 0.0993 ± 0.0001a

Finite rate (λ) (d-1) 1.1083 ± 0.0128 1.1068 ± 0.008 1.1040 ± 0.0001a 1.1040 ± 0.0001a

Net reproductive rate (R0) 
(offspring/individual) 

40.2 ± 15.4a 104.5 ± 32.8a 40.2 ± 0.2 105 ± 0.3 

Mean generation time (T) (d) 36.7 ± 0.9 46.3 ± 0.9 36.7 ± 0.01 46.4 ± 0.01 
Gross reproduction rate (GRR) 
(offspring/individual) 

68.6 ± 25.81a 207.4 ± 62.6a 68.1 ± 0.3 209.2 ± 0.7 

Means of a population parameter of 29°C and 25°C under the Jackknife or Bootstrap followed by the same letter 
are not significantly different (p > 0.05) using the U test. 
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help to better understand the issue. In Fig. 
7, fx (= mx) is the age specific fecundity, i.e., 
the total number of female offspring 
produced by a female during the age 
interval x ≤ age < x + 1. The age-specific 
survival rate (sx) is the probability of an 
individual of age x surviving to x+1. The 
age-specific survival rate can also be 
defined as lx, i.e., the survival rate from 
birth to age x. Arranging the data of Fig. 7 
in a Lewis-Leslie Matrix, we get the 
following matrix 

 

 
 
In this matrix, age is indexed from 

zero. To find the eigenvalues of matrix M0, 

we solve the characteristics equation    
|M–λI|= 0 (where I is the identity matrix) 
as 

 
λ4- 0.5λ2 - λ- 0.25 = 0 14 
Solving Eq. 14 by iterative bisection 

method, we obtain the dominant eigenvalue, 
λ = 1.21978, which is the finite rate of 
increase at a stable age distribution. The 
population projection given in Table 3, 
based on this hypothetical data also shows 
the λ of this cohort approaching to 1.21978 
as time (t) increases. The λ in Table 3 is 
the growth rate of the population from t to 
t+1. 

If for this cohort we use the 
Euler-Lotka equation as in Eq. 1, i.e., 

, we get the function: 

, where l0 = 
1, l1 = s0 = 0.5, l2 = s0 s1= 0.5, l3 = s0 s1 s2= 

Table 3.  Population projection of the hypothetical cohort and growth rate 

Time (t) 
Age (x) 

Total Growth rate (λ) 
0 1 2 3 

0 10.00 0.00 0.00 0.00 10.00 0.5000 
1 0.00 5.00 0.00 0.00 5.00 2.0000 
2 5.00 0.00 5.00 0.00 10.00 1.5000 
3 10.00 2.50 0.00 2.50 15.00 0.8333 
4 5.00 5.00 2.50 0.00 12.50 1.5000 
5 10.00 2.50 5.00 1.25 18.75 1.2667 
6 13.75 5.00 2.50 2.50 23.75 1.0789 
7 12.50 6.88 5.00 1.25 25.63 1.3171 
8 18.13 6.25 6.88 2.50 33.75 1.2222 
9 22.50 9.06 6.25 3.44 41.25 1.1742 
10 25.00 11.25 9.06 3.13 48.44 1.2548 
11 32.50 12.50 11.25 4.53 60.78 1.2159 
12 39.53 16.25 12.50 5.63 73.91 1.2061 
13 46.88 19.77 16.25 6.25 89.14 1.2323 
14 58.52 23.44 19.77 8.13 109.84 1.2169 
15 71.09 29.26 23.44 9.88 133.67 1.2160 
16 86.02 35.55 29.26 11.72 162.54 1.2241 
17 105.78 43.01 35.55 14.63 198.96 1.2183 
18 128.73 52.89 43.01 17.77 242.40 1.2188 
19 156.68 64.37 52.89 21.50 295.44 1.2212 
20 191.65 78.34 64.37 26.45 360.80 1.2191 
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0.25.  By solving this function by iterative 
bisection method, we get r = 0.19867 (λ = er 
= 1.21978) which is the same value 
obtained from Eq. 14. If we use the 
Euler-Lotka equation with age indexed 
from zero (l0 = 1), as (e.g., Meyer et al., 
1986; Maia et al., 2000) 

 

1
0







xx

x

rx mle  15 

 
we get the function: 

. By solving 
this function, we get r = 0.31191 (λ = er = 
1.36603) which is inconsistent with the 
projection results and the eigenvalue 

analysis of M0 . 
Furthermore, arranging the data of 

Fig. 8 in a Lewis-Leslie Matrix, we get the 
matrix  

 

 

 
In this matrix, age is indexed from 1 

(l1 = 1). To find the eigenvalue of matrix 
M1, we get the same characteristics 
equation as Eq. 14: λ4- 0.5λ2- λ - 0.25 = 0. 
Thus, we will certainly obtain the same 
finite rate λ = 1.21978 as M0 . 

Fig. 6. Frequency distribution of pseudo-values estimated by the jackknife technique and sample means estimated by
using the bootstrap technique (10,000 bootstraps) of the net reproductive rate of Helicoverpa armigera reared
at 25°C and 29°C. 
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If we use the Euler-Lotka equation 
with age indexed from one as 

 

  1
1

1 





xx

x

xr mle  16 

we get the function: 

 where 
l1=1, l2=s1=0.5, l3= s1 s2= 0.5, l4= s1 s2 s3= 

0.25. By solving this function, we get r = 
0.14621 (λ = 1.15744) which is also 
incorrect. However, if we use the 
Euler-Lotka equation as in Eq. 13, i.e. 

, we get the same 
function that we get from using Eq. 1: 

, and 
the same intrinsic rate of increase (r = 
0.19867) and finite rate (λ = er = 1.21978). 

Fig. 7. The age notations, the age-specific survival rate (sx and lx) and the age-specific fecundity (fx and mx) of a
hypothetical cohort with age indexed from 0. 

 

Fig. 8. The age notations, the age-specific survival rate (sx and lx) and the age-specific fecundity (fx and mx) of a
hypothetical cohort with age indexed from 1. 
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Thus, in order to apply the Euler-Lotka 
equation correctly when estimating the 
intrinsic rate of increase r, it is important 
to choose the right form as mentioned 
above, based on the formation of lx and mx 
in this study. 

A laboratory life table is a key to 
estimate the intrinsic rate of increase 
under a given set of conditions (Gutierrez, 
1996). The intrinsic rate of increase is the 
appropriate life table parameter and a 
good bioclimatic index for comparing the 
fitness of populations across diverse climatic 
and food-related conditions (Messenger, 
1964; Southwood, 1966; Smith, 1991; 
Kingsolver and Huey, 2008). Characterizing 
the demography of an insect under 
varying conditions is an essential task for 
understanding pests in natural environments. 
In this regard, the age-stage, two-sex life 
tables provide a comprehensive description 
of the demography of H. armigera under a 
given set of conditions. Based on this 
age-stage, two-sex life table analysis, it 
can be concluded that rearing H. armigera 
at 29°C is less conducive to maintaining a 
colony in a laboratory than rearing them 
at 25°C. 
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利用玉米穗蟲 Helicoverpa armigera (Hübner) 的生命表

與 Jackknife 和 Bootstrap 方法之討論與 Euler-Lotka 
Equation 的變異 

陳 樂 1,2、齊 心 1、唐立正 1* 

1 國立中興大學昆蟲學系 40227 台中市國光路 250 號 
2 Plant Protection Directorate, Department of Agriculture, Hariharbhawan, Lalitpur, Nepal 

 
 
 
 

摘  要 
 

  本研究以年齡齡期兩性生命表理論分析玉米穗蟲 Helicoverpa armigera 

(Hübner) 在實驗室 29°C 的環境條件下取食人工飼料之生命表。以孵化卵數計算年

齡別繁殖率可正確呈現不同日齡雌蟲所產的卵之孵化率的變化，並準確的呈現玉米穗

蟲的生物學特性。玉米穗蟲的內在增殖率 (r)、終極增殖率 (λ)、平均世代時間 (T)、

淨增殖率 (R0) 以及粗繁殖率 (GRR) 分別為 0.1029 d-1、1.1083 d-1、36.7 d、40.2 

offspring 以及 68.6 offspring；淨增殖率及雌蟲平均繁殖力間的關係與理論證明相

符。本研究指出，以人工飼料飼養玉米穗蟲的方式在 29°C 的環境條件並不如 25°C

下有利。利用 jackknife 和 bootstrap 兩種方法估計生命表族群參數的變方與標準誤

差，以 jackknife 重新取樣的方法所得到的 pseudo values 之頻率分布在常態檢定下

是失敗的，但 bootstrap 的結果符合常態分布檢定。因為在使用 jackknife 方法時會

產生沒有生物學意義的淨增殖率為零的 pseudo values，因此 jackknife 的方式不應

該用來估算淨增殖率的標準誤差。jackknife 應用在其他族群參數的估算上需要有更

進一步的探討。為了正確估算內在增殖率，Euler-Lotka 方程式中的年齡標示必須符

合存活率和繁殖率所定義的年齡標示。由於年齡齡期兩性生命表準確描述昆蟲的存

活、發育、齡期分化以及繁殖，我們建議昆蟲的生命表分析應使用兩性生命表。 

 

關鍵詞：人口統計學、內在增殖率、Euler-Lotka 方程式、Jackknife、Bootstrap。 
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