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Abstract

Box-Jenkins methodology is involved to fit an autoregressive integrated moving average (ARIMA) model for population
densities of the brwon planthopper, Nilaparvata lugens. The re- sultant model consists of two density regulating components, the
seasonal regulating component and the random regulating component; the former makes the population growth to follow a
pattern, but the latter to shift from the pattern and often masks the regularity density change contributed by the former. To
improve forecasting, analysis of residuals is necessary. Possibility of improvement is seen in the example of evaluating the
predation effect of Lycosa on the insect, based on the residuals from the ARIMA models fitted to these two insects.
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ABSTRACT

Box-Jenkins methodology is involved to fit an autoregressive integrated moving average
(ARIMA) model for population densities of the brown planthopper, Nilaparvata lugens. The re-
sultant model consists of two density regulating components, the seasonal regulating component
and the random regulating component; the former makes the population growth to follow a
pattern, but the latter to shift from the pattern and often masks the regularity density change
contributed by the former. To improve forecasting, analysis of residuals is necessary. Possibility
of improvement is seen in the example of evaluating the predation effect of Lycosa on the insect,
based on the residuals from the ARIMA models fitted to these two insects.

Introduction

The objective of the study is to develop a
model that accounts for the relationships
between observations and that will allow predic-
tion of the expected size of the population for
the brown planthopper. Since the data are struc-
turally correlated and chronologically ordered,
the Box-Jenkins methodology is used in the
statistical analysis. The methodology was first
used by Hacker etal. (1973) in entomology to
devleop a forecasting model for mosquito
population densities. Saboia (1977) used the
method to obtain birth forecasting models and
investigated their relationships with classical
models for population growth. The methodology
was also used by Lin (1979) to establish regres-
sion autoregressive integrated moving average
models for the light-trap data of rice insects.

Materials

Survey was made at a paddy of 0.1 ha at
Taichung Agricultural Improvement Station for
eight years from 1975 to 1982. Samples of size
varying from 100 to 200 hills of paddy were in-
vestigated every one week after transplanting,
and mean densities of the brown planthopper

(BPH, Nilaparvata lugens), Lycosa pseudoannulata
and Qedothorax insecticeps per hill were
obtained. T

To avoid getting into difficulties, strings of
zero counts obtained at the begining of every
crop season are excluded from the study, and
only 23 sets of data, of which 12 are obtained at
the first and 11 at the second crop season for
every year are used in the statistical analysis.
Observations are chronologically ordered to form
a time series of length 184.

Statistical Methods

Provided that, with a suitable data trans-
formation, the transformed density of an insect
population at time t is representable by a linear
function of the previous history of the popula-
tion and the random components closely related
to the dynamics of the insect population, we
have

Zy=byzp g thyzip ... tbyz bt

%1%t Crftm
where z, is the transformed density at time t,
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b; and ¢; are unknown constants to be estimated
from the data and ay, 4 1, .- A ATE random
components assumed to follow the normal dis-
tribution with zero mean and a specific variance
independently. By using backward shift operator
B, where Bz, =z, ; and B"z, =z, ;, the model
can be rewritten as

(1-bB-...-b BYz =(1-¢B-...-

cmBm)at,

which is a member of a fairly general class of
models explored in some detail by Box and
Jenkins, known as ARIMA processes. The general
expression of the process is given by

[1- Ay 1 - C,B%)] (1 - B

(-85Pz = [1- Gq®)] [1 - Hy®)]a,

where [1 - A(B)], [1 - CpBY)1, [1 - G(B)],
[1-H (B )] are palynomials of backward shift
operator B or B® with order p, P, q and Q res-
pectively, and S is the seasonal lag, which is 23 in
this study. Integers d and D are respectively de-
grees of nonseasonal and seasonal differencing
which may be required to produce stationary
time series from nonstationary one.

Steps of data analysis are summarized as
follows:
1. Selecting the order of differencing and trans-

formation

To fulfill additive and stationary conditions
of the model (1), a set of [d, D, A] in the expres-
sion

Wy = ¢!

B -8 g +01) a0

or
w, = (1-B)(1 - B23)Pon(y, +0.1) r=0
which minimizes a standarized sum of squares

2
E(L'W)m ............... Q)
(1)

is selected from the total combinations of d =

0,1,2,D=0,1,2and A =0, 0.25, 0.33, 0.50,
0.75, 10. In (2), y; represents the desnity
observed at time t, and the transformed variable
(y; + 0. 1) or fn(y, +0.1) is expressed by z, in
the general model (1) Rationale of the trans-
formation was given by Box and Cox (1964).
2. Model building

The Box-Jenkins methodology consists of
several steps. The first step involves using his-
torical boservations of the time series to identify
a tentative model to be used in forecasting future
values of the time series. In this identification
process, autocorrelation and partial autocorrela-
tion functions are estimated and used to identify
the. particular stationary time series model that
adequately describes the density of the observed
insect population. The second step involves
estimating unknown parameters of the tentative-
ly identified model. Non-linear least squares
technics are involved. The third step of the Box-
Jenkins methodology, called diagnostic checking,
involves testing the adequacy of the tentatively
identified and efficiently estimated model and,
if necessary, suggesting ways to improve the
model. Since the modeling process is supposed to
account for the relationships between the obser-
vation, and if it does, the residuals should be un-
related. Hence, numerically large autocorrelation
coefficients in the sample' autocorrelation
function of the residuals indicate that the fitted
model is deemed inadequate. In this case, im-
provement in the model should be made.

Details of the Box and Jenkins methodology
are given in the books of Box and Jenkins (1970)
and Bowerman and O’Conell (1979).
3. Farecasting

The minimum mean square error forecast

ZT(Q) for 2T+, the value to be observed at time
T + £, is given by

Z1(Q) = M1%1+8-1 - - - T U p4PS+d+DSZT+

2-p-PS-d-DS * 3T+ ~V13T+g-1 -

- Y q+QS?T+2-q-QS

where the coefficients in the right are obtained

by expanding the general model defined in (1)
and Zpigps -+ - 2T49-p-PS-d-DS 2T+
aT4g 1> - - - > AT +2-g-QS are cond1t10nal expec-
tations. The forecasts are evaluated by inserting



actual zt’s when these are known, forecasted
z’s for future values, actual a’s when these are
known, and zeros for future a’s. Hence, the one-
step ahead forcast at origin T is given by

2p1) = W%t - - * ¥ p4PS+d+DSZT+1-p-PS-d
DS~ Viir -~ V408iTH1-g-Q8

A necessary consequence is that the lead-1 fore-
cast errors are the generating a’s in the model,
that is

8141 = 2141 - 211
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Results

The standarized mean squares defined by (2)
are given in Table 1. The minimum appears at
d=1, D=1, and A=0 and the second smallest
which is only a little larger than the minimum
appedrs at d=1, D=0 and A=0. Since the effective
number of observation for estimating parameters
is 160 for the former and is 183 for the latter,
the first order differencing of the log-transformed
series with added 0.1 is tried to produce sta-
tionary series.

Table 1. Mean Square Standarized with the Jacobian of Inverse Transformation,
Transformation Non-seasonal and seasonal differencing: (d,D)

(0] 0,0 1,0 2,0 o,1) (1,1) Qe
0.00 241.87 108.75 255.01 133.87 105.62 270.91
0.25 351.89 162.66 381.89 213.83 171.92 468.86
0.33 466.25 230.02 550.45 324.56 259.84 720.20
0.50 987.86 574.54 1438.41 903.76 721.92 2030.87
0.75 4339.98 3198.23 8433.70 5338.18 4323.33 12099.90
1.00 25298.20 22241.70 60293.90 36713.80 30565.80 84069.90

The sample autocorrelation and partial  the model

autocorrelation functions of the first order dif-
ferences of the transformed variables are given
in Fig. 1. Examination of Fig. 1 indecates that
spikes appear at lags 1, 5, 10, 15,22, 23 and 46.
Such an autocorrelation function may arise from

02-

AC 00-

(1-C;B?3)(1 - By, = (1 - g B-gBS)at,

where z; = fn(y, + 0.1), and y; the observed
density at time t.
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Fig. 1. Autocorrelation coefficient (AC), two standard error of AC (2SE) and partial
autocorrelation coefficient (PAC) for the first order differencing series (Vzt)
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Table 2. Summary of Model for BPH

Differencing — 1 Regular differences

P eter Parameter Estimated 95 per cent
aramete stimate
Parameter type
number order value Lower limit Upper limit
1 Seasonal autoregressive 23 0.548189 0.421195 0.675183
2 Regular moving average 1 0.386142 0.250203 0.522081
3 Regular moving average 5 0.361649 0.219164 0.504134

284.375
1.81131

Residual sum of squares
Residual mean square

Results of estimation are given in Table 2.
The estimated standard deviation is 1.346 with
157 degrees of freedom.

Fig. 2 shows the sample autocorrelation
function for the residuals of the estimated
model. No significant autocorrelation is revealed,
The hypothesis that the residuals are white noise
seems acceptable. Also, the confidence intervals
in Table 2 indicate that the parameters estimated
are significantly different from zero and over-
fitting is not detected. The correlation coeffi-

cient between observed and calculated is 0.856.

Fig. 3 gives the general trends of the predicted
and observed.

Discussion

The estimated model can be expanded to
yield a difference equation

z =z, _; +0.54819 (Zt-23 -z t-24) ta -
0.386142a,_; - 0.361649a, s
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Fig. 2. Autocorrelation coefficient and two standard error of the autocorrelation coefficient
(2SE) for the residual series of the brown planthopper.
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Fig. 3. Observed (dashed line) and fitted (solid line) series of the brown planthopper.



It consists of two population density regulating
components; the seasonal regulating component
and the random regulating component. The sea-
sonal component represented by the term C.
(z;_g - 24_s_1) With positive C adds a negative or
a positive contribution to z;, according to the
population trend in the same season last year.
The random regulating component represented
by -Cya;_; - C,pa;_g with positive C; and C,
provids a feedback contribution to z;. Provided
that the model is adequate, a,_ represents the
deviation of the actual population growth from
the expected, and hence, the population growth
b weeks later will be slowed down if a;  is
positive and will be prompted if it is negative.
This kind of feedback regulation may partly
be attributable to the effect of predation by
Lycosa. The results of the regression analysis for
the residual on that from the ARIMA fitted to
Lycosa reveal that the regression coefficient at
lag 0 is significant and positive and that at lag 5
is also significant but negative. A positive re-
gression coefficient at lag O indicates that the
predator tends to aggregate about the paddy hill
where the prey is relatively abundant. The con-
sequence may increase the rate of predation and
- thus decrease the population size of one week
later and suppress the population growth of the
next generation. The details of the residual
analysis will be discussed eleswhere.

Once an appropriate model has been
obtained, it is used to forecast future values. To
get an accurate forecast is very difficult as seen
from Fig. 3. It has been revealed that the expand-
ed difference equation consists of two density
regulating components. Although the coefficients
of these two density regulating componets are
nearly equal numerically, it is obvious that the
unpredictable change in population density
contributed by the random density regulating
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component often masks the regularity change
offered by the seasonal density regulating com-
ponent, if the size of the standard deviation of
the residuals is taken into consideration. Be-
sides, in evaluating the minimum mean square
error forecast, all the unestimable residuals are
set to zero, that is, all the environmental effects
important to the population growth during
critical period are neglected. To see the possibili-
ty of forecasting future population densities
solely based on the relationships between the
densities observed, the parameters in the model
are newly estimated with the data obtained from
1975 to 1981, and is used to produce 23 one-
week-ahead forecasts of 1982. The sample stand-
ard deviation of the residuals from the model
newly fitted is 1.23, and the correlation coef-
ficient between these 23 one-week-ahead fore-
casts and the actually observed is about 0.7.
To improve forecasting, analysis of residuals
seems necessary and importand. Possibility is
shown in the example of evaluating predation
effect of Lycosa, given above.
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